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ABSTRACT 

A comprehensive evaluation of crop yield simulations with various seasonal climate data is 
performed to improve the current practice of crop yield projections. The El Niño Southern 
Oscillation (ENSO)-based historical data are commonly used to predict the upcoming season crop 
yields over the southeast United States. In this study, eight different seasonal climate data are 
generated using the combinations of two global models, a regional model, a statistical downscaling 
technique, and two convective schemes. These data are linked to maize and peanut dynamic models 
to assess their impacts on crop yield simulations compared to the ENSO-based approach. 
Improvement of crop yield simulations with the climate model data is varying, depending on the 
model configuration and the crop type. While the global climate model data provide no 
improvement, the dynamically and the statistically downscaled data show increased skill in the crop 
yield simulations. A statistically downscaled operational seasonal climate model shows a 
statistically significant (5%) interannual predictability in the peanut yield simulation. Since the yield 
amount simulated by the dynamical crop model is highly sensitive to wet/dry spell sequences (water 
stresses) during the growing season, a proper parameterization of precipitation physics is essential 
in climate models to improve the crop yield projection. 

———————————————— 

1.  Introduction 

If we have a reliable seasonal climate forecast at the beginning of a cropping season, we can estimate the 
upcoming season crop yield amount reasonably well by using a dynamic crop model. This will dramatically 
help farmers and/or crop decision-makers to prepare for the crop growing season (Jones et al. 2000; Hansen 
2002; Cabrera et al. 2009). However, the temporal and spatial resolutions of seasonal climate forecast are too 
low to use it directly in a crop model. A crop model needs a season-long daily weather dataset to simulate a 
crop yield amount. A skillful seasonal forecast in a monthly or seasonal average sense is necessary, but does 
not guarantee a good crop yield forecast (Shin et al. 2006; Baigorria et al. 2007). The seasonal climate 
forecast should capture the high-frequency modes of weather/climate variability (e.g., wet/dry spell 
sequences) properly to use it in a crop model for a reliable yield projection. 

Since the southeast United States has a strong teleconnection to tropical Pacific sea surface temperatures 
(e.g., Ropelewski and Halpert 1986; Higgins et al. 2000; Cocke et al. 2007), the Southeast Climate 
Consortium (SECC) developed a climate-based decision support system (http://agroclimate.org) and 
currently uses the El Niño Southern Oscillation (ENSO)-based historical weather data to implement a 
probabilistic yield risk forecast for a variety of crops (e.g., cotton, maize, peanut, potato, and tomato). The 
yield risk forecast is based on location, planting date, soil type and ENSO-based climate scenario (Fraisse et 
al. 2006). For example, if a La Niña condition is predicted by the state climatologists for the upcoming 
season, historical La Niña-type years of weather data are used to drive a crop model to generate a 
probabilistic yield risk forecast. However, there is a critical problem in this approach: the ENSO signal is 
weak during the summer cropping season over the southeast United States. Hence, the categorical projections 
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based on the ENSO index may not provide a useful guideline to stake-holders. The limitation of this 
approach is evaluated in this study. 

In addition to the above ENSO-based approach, there are statistical and dynamical downscaling 
approaches to generate seasonal forecasts at the station level from coarse resolution global climate model 
predictions. While the simple statistical methods (e.g., weather generator) have been extensively used (e.g., 
Dubrovsky et al. 2000; Phillips et al. 1998), recently developed advanced statistical downscaling methods 
(e.g., Lim et al. 2007; Schoof et al. 2009) have not yet been applied to crop models. A few dynamically 
downscaled seasonal climate datasets have also been used recently in crop model applications to study 
potential predictability of crop yield (e.g., Shin et al. 2006; Baigorria et al. 2007, 2008). However, a 
comprehensive study has not been performed to inter-compare the usefulness of available seasonal forecasts 
in the crop yield simulation. 

Here is our grand question for this study: Can a dynamical regional model or a statistically downscaled 
data provide sufficiently detailed and reasonably more accurate seasonal climate information compared to the 
ENSO-based observed weather data for use in crop yield forecasting? To compare with the ENSO-based 
forecast, this study examines both dynamically downscaled daily data using the Center for Ocean-
Atmospheric Prediction Studies (COAPS) regional climate model (~20km) and statistically downscaled data 
from both the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) and 
the COAPS global climate model. Yield sensitivity studies, employing the Decision Support System for 
Agrotechnology Transfer (DSSAT) crop model (Jones et al. 2003), are conducted by using these various 
daily climate data to improve the current practice of crop yield projections. In addition, the sensitivity of crop 
yields to planting dates is also examined. 

The paper continues in sections 2 and 3 
with brief descriptions of the seasonal climate 
data generated in this study and crop simulation 
experiments, respectively. In section 4 the 
current ENSO-based crop yield practice is 
reviewed and comprehensively compared with 
eight different approaches, followed by 
concluding remarks in section 5. 

2.  Season-long daily climate data 

 In addition to the ENSO-based climate 
data, 8 different sets of seasonal climate data 
are produced by using the COAPS Global 
Climate Model (GCM) and Regional Climate 
Model (RCM) (Cocke and LaRow 2000; Shin 
et al. 2005), the NCEP CFS (Saha et al. 2006), 
a statistical downscaling method (Lim et al. 
2007), and two cumulus parameterization 
schemes [Simplified Arakawa-Schubert (SAS, 
Pan and Wu 1994), Relaxed Arakawa-Schubert 
(RAS, Rosmond 1992)]. Crop growing season 
(March-September) ensemble simulations are 
first performed for a period of 19 years (1987-
2005) with the COAPS global and regional climate models using weekly prescribed sea surface temperatures 
(SSTs). Two different convection schemes (SAS and RAS) are used along with 10 different (i.e., daily 
lagged consecutive) atmospheric initial conditions to develop the ensembles which characterize uncertainty 
in the simulations. The statistical downscaling technique is then applied to these COAPS seasonal ensemble 
climate data to generate new sets of climate data. The CFS ensemble seasonal forecasts are obtained from the 
NCEP and also downscaled statistically. Table 1 summarizes the season-long daily climate data used in crop 

Season-long daily climate data  Abbreviation
ENSO Climate, 1911-2006 (no 1919)  D0  
COAPS GCM with SAS  D1  
COAPS GCM with RAS  D2  
Dynamical downscaling with COAPS 
RCM with SAS  D3 

Dynamical downscaling with COAPS 
RCM with RAS  D4 

Statistical downscaling with COAPS GCM 
with SAS (D1)  D5 

Statistical downscaling with COAPS GCM 
with RAS (D2)  D6 

NCEP CFS (rainfall only)  D7  
Statistical Downscaling with NCEP CFS 
(D7)  D8 

Table 1 A summary of seasonal climate data used (March-
September, 1987-2005) in the maize and peanut crop 
simulations. Except for the ENSO climate, there are ten 
ensemble members in each seasonal data. See the text for 
the acronyms used.  
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simulations. The abbreviations used in Table 1 
will be used from now on to indicate the 
corresponding climate data. Concise 
descriptions of the climate models and the 
statistical method employed are provided in 
the following subsections. 

2.1 COAPS GCM and RCM 

The COAPS GCM and RCM are used in 
this study to construct 10-member ensemble 
datasets of season-long daily climate. The 
model resolution used in the GCM is T63 
(approximately 1.875o) with 17 vertical levels. 
The RCM is nested in the GCM and runs at 
20km resolution, roughly resolving the county 
scale (Fig. 1). The RCM can add additional 
skill by improving the spatial representation of 
weather systems (Cocke et al. 2007). In order 
to improve seasonal surface climate outlooks, 
the COAPS GCM and RCM both have 
recently been coupled with the National Center 
for Atmospheric Research Community Land 
Model version 2 for the land surface 
parameterization (Shin et al. 2005, 2006). 

Since precipitation is very important 
weather input for a crop model, a proper parameterization of moist convection in an atmospheric model is 
essential to simulate the rainfall frequency and amount accurately. Different convective schemes can produce 
significantly different results in crop simulations. Two commonly employed convective schemes, SAS and 
RAS, are used in the COAPS models to assess their impacts. The main difference between these two 
convective schemes is that the RAS seeks to relax toward a quasi-equilibrium state rather than adjusting 
instantaneously to the equilibrium state as in SAS. Inner details of each scheme are available in their 
respective literatures.  

2.2 NCEP CFS 

The CFS was developed at the NCEP in order to improve seasonal forecasts dynamically (Saha et al. 
2006). It is a fully coupled one-tier model which includes ocean, land and atmospheric components. The 
nine-month long daily CFS reforecast data are available at 2.5o horizontal resolution for the period of 1981-
2006 (http://cfs.ncep.noaa.gov). Although the CFS provides a number of atmospheric variables, daily 
precipitation data are only employed in this study for use in crop models. Since maximum and minimum 
temperatures are required to drive a crop model, the CFS’s reported daily averaged temperature data are not 
directly applicable in the crop models used here. Hence, the crop model is supplemented with observed 
surface maximum and minimum temperatures and surface solar radiation. A ten member ensemble is, in this 
study, prepared for March through September each year. The ensemble is based on time-lagged initial 
conditions centered on mid- or late February (specifically, February 11, 12, 13, 19, 20, 21, 22, 23, 27, and 
28). Because the CFS data is available at 2.5o resolution, a statistical downscaling technique is performed to 
obtain the CFS data on the 20km regional grid. 

2.3 Statistical downscaling 

There are a wide variety of methods in statistical downscaling, ranging from simple interpolation, 
regression and analog methods, to more complex techniques such as artificial neural networks (e.g., Tolika et 
al. 2007; Robertson et al. 2007; Schoof et al. 2009). The main technique used in this study for producing 

Fig. 1 The regional model domain and the target site 
(Tifton, GA) used in this study. While the global model 
cell grids are shown in thick solid lines, those of the 
regional model are shown in thin lines. 
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downscaled climate data consists of Cyclostationary Empirical Orthogonal Function (CSEOF) analysis, 
multiple regression, and stochastic time series generation. Lim et al. (2007) showed that CSEOF analysis is 
very efficient to extract the complete spatio-temporal evolution of the significant climate signals over a 
cyclic period, compared to conventional eigen-techniques. This way of data decomposition enables the 
subsequent regression to better extract the GCM evolution patterns physically consistent with evolutions of 
the observational climate modes. CSEOF and multiple regression identify the statistical relationships 
between coarse-scale and fine-scale climate variability, and hence produce a downscaled fine resolution 
climate data. The complete description of the statistical downscaling technique can be found in Lim et al. 
(2007). This statistical downscaling method is applied to both COAPS and CFS global model outputs to 
measure its usability in crop models. 

3. Crop simulations 

Dynamic crop model systems, as decision supporting tools, have extensively been utilized by agricultural 
scientists to evaluate possible agricultural consequences from interannual climate variability and/or climate 
change (e.g., Paz et al. 2007; Semenov and Doblas-Reyes 2007; Challinor and Wheeler 2008). The Decision 
Support System for Agrotechnology Transfer (DSSAT) version 4.0 (Jones et al. 2003) is used to perform 
crop yield simulations. DSSAT integrates the effects of crop phenotype, soil profiles, weather data, and 
management options into a crop model. It includes several process-based crop models with 27 different crops. 
The crop model uses maximum and minimum surface temperatures, rainfall, and incoming solar radiation 
from season-long daily weather records. It computes plant growth and development processes on a daily 
basis in a specific location, from planting date to maturity date. As a result, the impact of weather, soils, and 
management decisions on a crop yield can be well estimated. 

Daily seasonal climate data are used as 
inputs for the DSSAT crop model for the 19 
year period over Tifton, Georgia (Fig. 1). This 
site is chosen because weather data are 
relatively well observed and maintained for a 
long period. Missing values of incoming solar 
radiation are estimated using the technique of 
Richardson and Wright (1984). In the 
southeast United States, maize and peanut are 
economically important crops. The CERES-
Maize (Ritchie et al. 1998) and CROPGRO-
Peanut (Boote et al. 1998) in the DSSAT are 
well validated models suitable for simulation 
during the season of interest. Thus, these crop 
models are linked with seasonal climate data 
produced in this study. Soil profiles for the 
dominant agricultural soil are based on United 
States Soil Conservation Service county data 
(see details in Baigorria et al. 2008). Rainfed 
conditions and fixed fertilizer applications are 
assumed in management conditions. This 
means every setup is the same but for seasonal 
climate data. For maize, 250 kg ha-1 of 
Nitrogen is applied as ammonium nitrate divided in five applications. For peanut, 40 kg ha-1 of Nitrogen is 
applied as ammonium sulfate in one application at planting.  

Identical initial soil conditions are also used in all simulations (0.183 cm3 cm-3). While April 25th is used 
as the control planting date for peanut, April 1st is used for maize. Sensitivity of yields to different panting 
dates is also examined using observed weather data for the period of 1911-2006. Planting date ranges from 
March 22nd to May 1st for maize and from April 15th to May 15th for peanut. 

Fig. 2  Top panel shows the ENSO-based peanut yields with 
four different planting dates (4/15, 4/25, 5/5, and 5/15) for 
Tifton, GA. Bottom panel is the corresponding seasonal 
precipitation amounts. The boxes and whiskers are the 
average values and standard errors for the period of 1911-
2006, respectively.
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4.  Results 

4.1  ENSO climate (the current practice) 

The current practice of crop yield 
simulations is re-investigated here. ENSO is a 
dominant signal experienced over the 
southeast United States during winter. The 
current crop yield projection practice does not 
always perform well during summertime since 
the convectively-driven weather is stronger 
than the ENSO effect over this region. 

Figure 2 shows the daily observed weather 
driven peanut yields (1911-2006) and the 
corresponding seasonal rainfall amount, 

averaged over 3 ENSO phases and four 
different planting dates. The ENSO categories 
are based on the Japan Meteorological Agency 
index (defined in the SECC). There were 20 El 
Niño years, 21 La Niña years, and 54 Neutral 
years. Year 1919 had too many missing values 
to use and it was excluded in this study. In terms of total amount of rainfall during the crop growing season, 
the average amounts do not depend on ENSO phase and approximately 65% higher rainfall variability exists 
within the El Niño years. Meanwhile, in terms of yields, approximately 450 kg ha-1 higher average peanut 
yields are simulated during the La Niña years compared to the average of the El Niño years (2150 kg ha-1). 
The difference is statistically significant at the 15% level. While the El Niño years suffer from a somewhat 
consistent dry period during the crop planting dates (April or May), the La Niña years do not show much 
water deficiency during this period over this region (http://agroclimate.org). During the El Niño, a later 
planting management option produces higher yields. This result is similar to other studies (e.g., Mavromatis 
et al. 2002; Paz et al. 2007). The maize case is not shown due to similar results. 

Using the ENSO-based method (Fig. 2), maize and peanut yields are projected for the years of 1987-
2005 in Fig. 3. Yield projections based on only three different ENSO phases cannot properly capture the 
observed interannual variability. The temporal correlation coefficients (r) are 0.202 for maize and 0.306 for 
peanut. The root mean square errors (RMSEs) are shown as well in the figure. While the crop yields during 
both the El Niño and the neutral years are very similar to each other, the La Niña years produce slightly 
higher yields. Simulated observed-weather-driven yield variability is usually higher during the neutral years. 
This crop yield projection is the current practice. Hence, here is our question again: Can we make a better 
projection than this current projection? 

4.2 Precipitation vs. yield  

It is well known that rainfall is one of the most 
important weather data for crop yield simulations 
(e.g., Baigorria, 2008). Hence, it might be 
interesting to examine the relationship between 
precipitation and yield. Temporal correlations 
(1911-2006) are computed between the simulated 
observed-weather-driven yields and the crop 
season total rainfall amounts in Table 2. 
Variability of seasonal rainfall total explains crop 
yields approximately 25% for maize and 45% for 
peanut. Water availability seems to be more 

Planting Date  Maize  Planting Date Peanut  
3/22  0.482  4/15  0.655  
4/1  0.452  4/25  0.659  

4/11  0.454  5/5  0.671  
4/21  0.503  5/15  0.687  
5/1 0.576   

Fig. 3  ENSO-based crop yields for (a) maize and (b) 
peanut. Black dots, boxes, and whiskers are the simulated 
observed-weather-driven values, ENSO-based mean 
projections, and its standard errors, respectively. Symbol E 
denotes El Niño, L La Niña, and N Neutral year.  

Table 2 Temporal correlation coefficients between the 
observed weather driven crop yields and the 
corresponding crop season total precipitation amounts 
(1911-2006, 95 yrs, no 1919). 
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important for peanut than maize. Hence, a good seasonal total precipitation forecast can capture more than 
35% of the variability of crop yields. 

However, there is a much more important 
parameter for crop yield estimations. 
Examination of rainfalls and yields in 1988 (El 
Niño year) and 1989 (La Niña year) 
demonstrates the importance of precipitation 
frequency and amount. For both years, total 
rainfall amounts are almost identical (~550mm, 
Fig. 4 (b)). However, there was only ~5000 kg 
ha-1 maize yield in 1988 compared to ~10,000 
kg ha-1 in 1989 (Fig. 4(a)). This is due to 
water stress. For crop yields, water stress is a 
more important variable than total water 
amount. It means that yields simulated by 
dynamic crop models are highly sensitive to 
wet/dry-spell sequences during the crop 
growing season. Not only increasing 
persistence of wet/dry day occurrences is 
important, but the timing within the growing 
season when these wet/dry spells occurred is 
particularly important (Baigorria et al. 2007). 
While the maize crop experienced strong 
water stresses during the growing season in 
1988, it encountered a brief water stress period 
in 1989 (Fig. 5). This is why there was a much 
higher yield in 1989. Generally, La Niña years 
experience much less water stress periods than 
El Niño years and hence produce higher 
simulated yields. 

Water stress is a function of precipitation, 
evaporation, run-off, soil moisture, and crop 
physiology. Although there are numerous 
ways to define water stress index (e.g., Rizza 
et al. 2004), the water stress index used in this 
study is very simply defined as the 120-day 
average of water stresses from crop models. 
Figure 6 shows the relationship between the 
water stress index and the maize yield for the 
period of 1987-2005. Not surprisingly, the 
correlation between them is -0.89. It is highly 
negatively correlated. Hence, if the water 
stress index is properly defined and estimated 
ahead of the upcoming crop growing season 
using predicted atmospheric variables, a 
possible yield outcome will be better projected. 

4.3 Global vs. regional models 

Figure 7 shows the simulated maize yields in Tifton, GA, from 1987 to 2005 and the corresponding total 
precipitation amounts using D2 and D4 in Table 1. Compared to the ENSO-based approach, the climate 
models (especially, regional models) have higher interannual fluctuation of the simulated yields. While the 

Fig. 4  (a) Simulated observed-weather-driven maize yields 
vs. (b) crop season total precipitation amounts. Arrows 
indicate interesting years described in the text. 

Fig. 5  Simulated maize water stresses during 1988 (solid 
line) and 1989 (dashed line) crop growing seasons. DAP 
denotes day after planting. 

Fig. 6  Water stress index (WSI) vs. yield. Black dots are 
the simulated observed-weather-driven yield and the square 
dots are WSI. The correlation between them is -0.89. 
Symbols E, L, and N denote El Niño, La Niña, and Neutral 
year, respectively.  
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global model (D2) provides no improvement 
(r=0.128, RMSE=4299.3 kg ha-1) compared 
to the ENSO-climate (r=0.202, 
RMSE=2969.8 kg ha-1), the regional climate 
model (D4) captures the interannual 
variability better in the yield simulation 
(r=0.405, statistically significant at the 5% 
level, RMSE=2753.3 kg ha-1). Generally, the 
global model produces much less yield 
amounts due to more frequent raindays and 
less daily rainfall amount. Meanwhile, the 
regional model produces better yield 
average estimations. Therefore, the benefit 
of dynamical downscaling using a regional 
model is obviously demonstrated in the crop 
simulation. To make the GCM output useful 
for applications, it is necessary to downscale 
the model output, using either dynamical or 
statistical methods. Similar results are also 
achieved with peanut. Skills decrease when 
changing the convective scheme from RAS 
to SAS (see section 4.6). 

4.4 Dynamical vs. statistical models 

Instead of using dynamical downscaling 
data, we can use statistically downscaled 
data (D5 and D6 in Table 1) to drive the crop 
models. The statistical technique has some 
advantages (e.g., computationally cheap) as 
well as some disadvantages (e.g., physically 
inconsistent among variables). The crop 
yield simulation results are better than the 
ENSO-based approaches (r=0.251, 
RMSE=2959.9 kg ha-1 with D6). This is 
better than some of the dynamically 
downscaled results (r=-0.036, RMSE=3226.5 
with D3), but worse than D4 (Fig. 8). 
Generally, dynamical downscaling methods 
have the potential to outperform statistical 
techniques, particularly because the resulting 
downscaled climate data are physically 
consistent with other variables and with the 
GCM output from which they are derived. 
Nevertheless, the statistical method is a very 
useful tool when no regional climate models 
and sufficient computing resources are available. 

4.5 CFS vs. its statistically downscaled data 

It is very interesting to assess the capability of an operational seasonal climate model in crop model 
simulations. In order to explore the feasibility of using the CFS model output to help determine crop yields in 
the southeast United States, a series of crop model experiments are performed using the daily CFS model and 
its statistically downscaled data. The CFS model tends to over-predict precipitation by almost 500 

Fig. 7  (a) Simulated maize yields for Tifton, GA for the period 
of 1987-2005 and (b) their corresponding precipitation amounts. 
The maize model is driven by global and regional model data 
with the RAS scheme (D2 and D4 in Table 1). Black dots are the 
simulated observed-weather-driven values. While open boxes 
and whiskers are for global model data, closed ones are for 
regional model data. Symbol E denotes El Niño, L La Niña, and 
N Neutral year.  

Fig. 8  Same as Fig. 7 but for the dynamical (open boxes) and 
statistical downscaling (closed boxes) data (D4 and D6 in Table 
1, respectively).  
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mm/season for each of the 19-years (Fig. 9 
(b)), which provide no water stress 
conditions for the crop model. Hence, the 
maize yield amounts are generally very 
high (approximately 1000 kg ha-1) 
compared to observations (Fig. 9 (a), 
r=0.043, RMSE=5609.6 kg ha-1 with D7). 
Meanwhile, the statistical downscaling 
remedies the CFS bias problem, generates 
better rainfall inputs for the crop models, 
and therefore improves maize crop yields 
(r=0.295, RMSE=2872.3 kg ha-1 with D8). 
This result is non-significant at the 5% 
level for maize. However, a statistically 
significant result is obtained for peanut 
yields (r=0.674 with D8). 

Since the CFS data configuration uses 
observed maximum and minimum 
temperatures and solar radiation, it might 
have an advantage over other data sets used. 
As shown in section 4.2, water stress 
(precipitation frequency and amount) is the 
most important variable and can explain 
approximately 80% variance of crop yields. 
Therefore, these experiments using 
observed maximum and minimum 
temperatures and radiation will not affect 
the results significantly. To evaluate this, 
another set of seasonal climate data is 
generated using the D4 precipitation with 
observed other variables to drive the crop 
models. Not much different results are 
obtained with this data. This confirms that 
precipitation is the most dominant variable 
to determine the crop yield amount.  

4.6 Overall crop yield estimation 

The overall performances of each 
climate data in crop yield simulations are 
summarized in Fig. 10 for maize and in Fig. 
11 for peanut, respectively. Although there 
are many other ways to evaluate skill scores, 
normalized RMSE and temporal correlation 
coefficient (r) are used as simple evaluation 
tools in this study to compute the skills for 
intercomparison. The normalized RMSEs of 
the ENSO-based yield for maize and for 
peanut are 0.466 and 0.576, respectively. As 
a percentage of the simulated observed-
weather yield mean, the RMSE range from 43.2% to 88.1% for maize and from 46.7% to 128.1% for peanut. 
For maize, D4, D6, and D8 performed better than D0, whereas for peanut, D4, D5, and D8 performed better 

Fig. 9  Same as Fig. 7 but for the CFS (open boxes) and its 
statistically downscaled (closed boxes) data (D7 and D8 in 
Table 1).

Fig. 10  Simulated maize yields with 8 different seasonal 
climate data (see Table 1). Black dots denote the simulated 
observed-weather-driven yields. The gray dots and whiskers 
represent the ensemble means and standard errors of the 
corresponding seasonal climate data. The values shown are 
normalized RMSE and temporal correlation coefficient (r). 
The normalized RSME and r with ENSO-climate (D0 in Table 
1) are 0.466 and 0.202, respectively. 
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than D0. For both crop yield simulations, D7 
performed the worst. Similar conclusions 
can be obtained in terms of the correlation 
coefficient.  

The yield performance strongly depends 
on the convective scheme used. The 
simulated maize yields with the SAS 
schemes (Fig. 10a, c, and e) are not better 
than those with the ENSO-based approach 
(Fig. 3a). Generally, the RAS scheme 
substantially improves the yield estimations 
(Fig. 10d and f). The performances of 
COAPS GCM data with the SAS and the 
RAS are not better than the ENSO-based 
approach. However, the dynamical and the 
statistical downscaling methods produce 
better datasets than the global model to 
improve the crop yield projections. The best 
performance for maize yield is achieved in 
this study with the dynamical downscaling 
with the RAS scheme (Fig. 10d: r=0.405, 
normalized RMSE=0.432). Meanwhile, the 
best peanut yield performance is obtained 
using the CFS with the statistical 
downscaling method (Fig. 11h: r=0.674, 
normalized RMSE=0.467). Both results are statistically significant at the 5% level. 

5. Conclusion 

This paper evaluated the sensitivity of the crop model to nine different seasonal climate data for maize 
and peanut yield simulations comprehensively. The most commonly employed yield prediction method is 
based on the ENSO-based approach. The ENSO has played an important role in crop yield projections in 
many regions of the world. However, it exhibits a very limited forecast skill due to the weak summer time 
ENSO effects over the southeast United States. Using two global climate models (COAPS GCM and NCEP 
CFS), two downscaling methods (dynamical and statistical), and two cumulus parameterizations (SAS and 
RAS), eight different seasonal climate data were generated. Each of those climate data has 10 ensemble 
members to show the uncertainty of simulations. 

Instead of assessing the meteorological skill of the COAPS global and regional models and the CFS 
global model in the southeast United States, this study evaluated the skill of crop yield simulations. A simple 
skill evaluation of meteorological fields (such as precipitation and surface temperature) is sometimes 
insufficient due to non-linear crop model responses to seasonal climate data. For crop model yields, the 
length and timing of dry/wet spells (or frequency of rainfall) during the growing season is more important 
than total seasonal rainfall amount. The current ENSO-based crop yield projection practice was improved by 
several seasonal climate datasets, depending on the model configuration and the crop type. The type of 
convective scheme turned out to be an important parameterization for the crop yield amounts. Generally, the 
dynamical and the statistical downscaling approaches perform better in maize and peanut yield simulations 
than the global climate model. 

To improve crop yield predictions further, the currently available climate models should be improved to 
capture the rainfall frequency and amount properly. In addition, a reliable posteriori bias correction method is 
needed particularly for precipitation. Multi-model (weighted) ensemble approaches (e.g., Shin et al. 2008) 
might be very helpful in this approach. The authors are also currently developing a two-way crop-

Fig. 11  Same as Fig. 10 but for peanut. The normalized 
RSME and r with ENSO-climate (D0 in Table 1) are 0.576 
and 0.306, respectively.  
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atmospheric coupling using the COAPS regional climate model and the DSSAT crop model over the 
southeast United States. Up to recently, the DSSAT crop models were only applied to specific locations to 
determine crop yields. The crop model is now being expanded and assigned to each of the 20km downscaled 
grid points in the southeast United States. 
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