National Weather Service/OHD

Science Infusion and Software Engineering Process Group (SISEPG) – C++ Coding Standards and Guidelines Peer Review Checklist

C++ Coding Standards and Guidelines

Peer Review Checklist

Last Updated: 11/16/2006
	Reviewer's Name:
	
	Peer Review Date:
	

	Project Name:
	
	Project ID:
	

	
	
	Enter if applicable
	

	Developer’s Name:
	
	Project Lead:
	

	Review Files & Source code
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	Code Approved
	

The following check list is to be used in the assessment of C++ source code during a peer review. Items which represent the code being reviewed should be checked.

1. General Programming Standards and Guidelines
Refer to the OHD General Programming Standards and Guidelines Peer Review
Checklist to assess the adherence to the OHD General Programming Standards and
Guidelines.

2. C++ Programming Standards
2.1 Readability and Maintainability

______Consistent indentation (3 or 4 spaces)
______Consistent use of braces

______No tabs used
2.2 File Names

______Header files and namespace files use suffixes: .h, .H, .hh, .hpp, or .hxx
______Source files use suffixes: .C, .cc, .cpp, or .cxx

______UpperMixedCase is used for class or namespace file names

______lowerMixedCase is used for function file names

2.3 File Organization

______Each file contains only one class declaration or definition except functors and
static classes
______File includes a brief description of the file after the documentation block

______The content of the file is in the following order:

1. The preprocessor directives to prevent multiple inclusions in header files.

2. The Documentation block described in the "OHD General Software Development Standards and Guidelines"

3. A brief description of the file

4. Include files

5. #defines and Macros

6. The ‘use’ directives in the source files but not in header files

7. Class or function declaration or definition

2.4 Include Files

______C++ standard library headers that have no extension are used
______New prefix c is used instead of the old extension .h for C standard header files
______The < > pair for library and system headers is used
______The " " pair for non-system (user defined) headers is used
______No absolute or relative paths to point to the header files are used
______The system header files first in alphabetical order followed by the non system
include files (including COTS includes) also in alphabetical order
2.5 Comments
______The JavaDoc convention format is used for the documentation comment
______The C++ comment "//" style or the C style (/* ... */) is used for inline comments

2.6 Naming Schemes

______namespace, class, struct, template argument, and parameter names use
uppercase letters as word separators with the first character capitalized
______Macro and #defined constant, enum, union, class static data member, and
global variable names are all capitalized with underscore as separators
______Class methods and variable names use uppercase letters as word separators with
the first character is not capitalized
______Private class data member names are prepended with the underscore, the rest is
the same as method names
______static const data members are all uppercase
______typedef names reflect the style appropriate to the underlying type
______Class, struct, variable, and method names that differ by case only are not used
______C function names follow the OHD C Programming Standards and Guidelines

2.7 Class Design

______Class members are declared in this order: public members, protected members,
private members
______Data members are properly protected (declared as private or protected)
______Classes (except functors and static classes) implement a default constructor, a
virtual destructor, a copy constructor, and an overloaded assignment operator
______Static classes declare a private default constructor to prevent instantiation

2.8 Safety and Performance
______Type conversions have been done explicitly. The C++ set of casting operators
static_cast, reinterpret_cast, const_cast and dynamic_cast have been used instead of C-style casting
______Global variables are not used except in rare cases and when used include an inline
comment describing the reason for use.
______Dynamically allocated memory is deallocated when no longer needed
______There is no dangling pointers. Pointers are always tested for NULL values before
trying to dereference them
______There is no hardcoded numerical values, const or enum type values are used
instead
______Large objects are created on the heap
______The arguments specified in a function prototype are associated with variable
names
3. C++ Programming Guidelines

3.1 Readability and Maintainability

______A space is put between the parenthesis and the keywords or the function names
______A space is put between variables, keywords and operators

______Pointers are named in some fashion that distinguishes them from other
“ordinary” variables
______Parentheses are used in macros to ensure correct evaluation of the macro
______The goto statement is used very sparingly
3.2 User Defined Types

______static const members are used instead of #defined constants
______Proper typedefs are used instead of using templates directly
______enum is used to define a collection of integral constants
3.3 Variables

______const correctness has been practiced
______All variables are correctly initialized
______Local variables are declared near their first use.
______The copy constructor is used to construct an object instead of the assignment
operator (=)
3.4 Performance

______inline functions are used instead of Macros
______The prefix form (++i or --i) is used instead of postfix form (i++ or i--)
______Pointer arithmetic has been avoided
______Repetitive computations are reduced by only doing them once and saving the
result in a temporary variable for future access
3.5 Class Design

______Parts-of relation inheritance has been avoided

4. Reviewer’s Comments:

1
11/16/2006

Version 1.9

