

VACUUM

11/20/2006
When records are deleted from a table through an SQL DELETE, the deleted records are referred to as "dead tuples". They are not removed from the db and the space they reside in is NOT MARKED AS BEING AVAILABLE FOR RE-USE. The same situation occurs for updated records. The VACUUM command must be run to make the "dead tuple" space available for reuse.
Running the vacuum command (without the "full" option) marks previously deleted (or updated) records as being available for re-use within the table. It does not lock the table being vacuumed. Running vacuum with the "analyze" option reads the records in the tables and generates statistics used by the queries. This information is stored in the pg_statistics table.

The SwEG's policy on running vacuum is to have the postgres cron submit vacuum runs for each of the standard AWIPS databases. This will prevent the possibility of multiple vacuum runs executing at the same time which can cause a slowdown in the server. A vacuum/analyze of the IHFS db has been scheduled to be submitted from the postgres cron every 4 hours.
VACUUM FULL

A "vacuum full" attempts to remove deleted or updated records from the tables to make the space reusable by other tables. It physically reorders the tables. While "vacuum full" is running, an exclusive lock is placed on the table being vacuumed. This locks the table for both reads and writes. A "vacuum full" run is NOT necessary to be run on a regular basis. The SwEG is discussing the set up of an ITO Alarm for the case of a database getting very large where a run of "vacuum full" would shrink the database back to normal size.
VACUUM ALL

The postgres documentation recommends that sites routinely run a “vacuum all” to be certain that all databases (including template1) are vacuumed. This can be done using the following command:

vacuumdb --all -U postgres

Note that the “-U postgres” must be specified on the command line for this to work correctly. Running “vacuumdb –all” without “-U postgres” while logged in as user=postgres does NOT work.

"vacuum" and "vacuum full" can be run for an entire database or for individual tables. See Section 21.1.1 of the PostgreSQL 7.4 Documentation entitled "Recovering disk space" for information on strategies for running VACUUM.

Explanation of Vacuum Log Output
The last few lines of output from running a vacuum on an OHD db look as follows:

INFO: free space map: 901 relations, 6879 pages stored; 74608 total pages needed

DETAIL: allocated FSM size: 1000 relations + 20000 pages = 178 kB shared memory.

VACUUM

On the "INFO" line, "901 relations" signifies that a total of 901 tables currently exist across all databases on the server.

In the "DETAIL" line, FSM is an acronym for Free Space Map. This line shows that space has been allocated for a maximum of 1000 tables and 20000 pages for all postgresql databases on the server.

Vacuum of template1 Database

The reason for vacuuming template1 is that vacuum also resets the transaction ID number and prevents what is called "transaction ID wraparound". From what I can understand of this occurrence, all postgres db transactions are assigned an ID (a number). If the transaction ID number gets too big, it will "wraparound" to some smaller number possibly overwriting old transaction information with a subsequent loss of data. This can be expected to occur at sites (such as NWRFC) with huge numbers of daily database transactions. Note: This occurrence has nothing to do with filling up disk space so the monitors on disk space will not catch the problem.

postgres generates warning messages in the postgres log when transaction ID wraparound may be imminent. These are the messages which NWRFC has seen (I saw them here at OHD awhile back). Until the vacuum of template1 is occurring regularly, the only way to watch for transaction ID wraparound is to monitor the postgres logs.

Vacuum Script

The following script is submitted via the postgres cron on dx1 at all AWIPS sites to vacuum the PostgreSQL databases. The filename is /awips/ops/bin/vacuum_pgdb.

#!/bin/bash

#

NAME

vacuum_pgdb - Vacuum a postgres database

#

SYNOPSIS

vacuum_db -d db_name [-z]

#

DESCRIPTION

This script calls the vacuumdb executable to vacuum AWIPS databases.

It will normally be run from the "postgres admin user" cron.

#

The command line of the script is

#

vacuum_db -d db_name,... [-z]

#

db_name = the name of the database to be vacuumed

#

or

vacuum_db -a -x db_name,... [-z]

#

db_name = the name of the database to exclude from the vacuum

#

The "-z" option is optional. If it appears on the command line,

then the vacuum will also perform an "analyze".

#

This script logs output to /data/logs/fxa/vacuum_${DBNAME}_MMDD.

#

HISTORY

4/08/2005 Original Version (Paul Tilles)

4/19/2005 Updates for environment vars, command line options
#

###

USAGE="Usage: $0 -a|-d dbname_list [-x exclude_list] [-z]"

FXA_HOME=${FXA_HOME:-~fxa}

unset ANALYZE

VACUUM="vacuum"

VACUUM_ALL=0

unset DBNAME_ARRAY

unset EXCLUDE_ARRAY

Read the command line args

while getopts :ad:x:z opt ; do

 case $opt in

 a) VACUUM_ALL=1

 ;;

 d) DBNAME_ARRAY=(${OPTARG//,/ })

 ;;

x) EXCLUDE_ARRAY=(${OPTARG//,/ })

 ;;

 z) ANALYZE="--analyze"

 VACUUM="vacuum analyze"

 ;;

 *) echo $USAGE;

 exit 1

 ;;

 esac

done

if [-z "${DBNAME_ARRAY[*]}" -a $VACUUM_ALL -eq 0] ; then

 echo $USAGE

 exit 1

fi

Source the AWIPS and PostgreSQL environments

. $FXA_HOME/readenv.sh

. postgresenv.sh

PSQL_BIN_DIR=$PG_INSTALL/bin

if [$VACUUM_ALL -ne 0] ; then

 DBNAME_ARRAY=($($PG_INSTALL/bin/psql -U postgres --list --tuples-only \

| while read _DBNAME _JUNK; do \

if ["$_DBNAME" != "template0" -a "$_DBNAME" != "template1"] ; then \

echo $_DBNAME; fi; done))

fi

for EXCLUDE in ${EXCLUDE_ARRAY[*]} ; do

 let "I = 0"

 while [! -z "${DBNAME_ARRAY[$I]}"] ; do

if ["${DBNAME_ARRAY[$I]}" = "$EXCLUDE"] ; then

 unset DBNAME_ARRAY[$I]

fi

let "I = $I + 1"

 done

done

if [-z "${DBNAME_ARRAY[*]}"] ; then

 echo "Nothing to vacuum!" > /dev/stderr

 exit 1

fi

###

Run vacuumdb

Write database name, begin time and end time to log

EXIT=0

for DBNAME in ${DBNAME_ARRAY[*]} ; do

 LOGFILE=$LOG_DIR/vacuum_${DBNAME}_$(date -u +%m%d_%H%M)

We should not need to do this, all databases should be owned by pguser

 USERNAME=$($PG_INSTALL/bin/psql -U postgres --list --tuples-only | \

while read _DBNAME _DELIM _USERNAME _JUNK ; do \

if ["$_DBNAME" = "$DBNAME"] ; then echo $_USERNAME; fi; \

done)

 echo $(date +"%b %d %T") BEGIN $VACUUM $DBNAME as $USERNAME >> $LOGFILE

 $PSQL_BIN_DIR/vacuumdb -v $ANALYZE -U $USERNAME $DBNAME >> $LOGFILE 2>&1

 RETURN=$?

 if [$RETURN -ne 0] ; then

EXIT=$RETURN

 fi

 DTZ=`date -u +%T`

 echo $(date +"%b %d %T") END $VACUUM $DBNAME EXIT_CODE=$RETURN >> $LOGFILE

done

exit $EXIT
A log file is generated by each vacuum run. Logs generated by the execution of the /awips/ops/bin/vacuum_pgdb script are written to the $LOG_DIR directory which normally points to the /data/logs/fxa directory. These log files will be monitored to watch for problems such as a slow increase in size of the db over time. We also hope to glean information from the logs which will be used to tweak the configuration parameters.
Submitting from cron

The vacuum_pgdb script is submitted via the cron on dx1 as follows:

DX1apps postgres crontab

This is the cluster-managed crontab for postgres

00 00,04,08,12,16,20 * * * postgres . ${FXA_HOME:=~fxa}/readenv.sh; /awips/ops/bin/vacuum_pgdb -d hd_ob6$(echo $FXA_INGEST_SITE | tr "[A-Z]" "[a-z]") -z

05 02 * * * postgres /awips/ops/bin/vacuum_pgdb -d hmdb

05 05 * * * postgres /awips/ops/bin/vacuum_pgdb -d hmdb -z

05 03 * * * postgres /awips/ops/bin/vacuum_pgdb -d fxatext

05 07 * * * postgres /awips/ops/bin/vacuum_pgdb -d fxatext -z

05 09 * * * postgres . ${FXA_HOME:=~fxa}/readenv.sh; /awips/ops/bin/vacuum_pgdb -a -x fxatext,hd_ob6$(echo $FXA_INGEST_SITE | tr "[A-Z]" "[a-z]") –z
The above statements are located in files in the /etc/cron.d directory.

Other Info

The following site offers an interesting discussion concerning vacuuming:

http://pgsqld.active-venture.com/routine-vacuuming.html
Analyzing Vacuum Output

Q: I got the following output at the end of my vacuum :

INFO: free space map: 260 relations, 20604 pages stored; 52512 total pages needed
DETAIL: Allocated FSM size; 1000 relations + 20000 pages = 178 kB shared memory

This output is from a Version 7.4.x "vacuum all". How should this output be interpreted?

A: It appears your FSM is a bit too small. While it can track all of the relations you have, it's not able to store information about all of the pages that contain free space. As a result, there is probably a lot of fragmented data (spaces marked as free, but the tuples aren't being re-used because the FSM isn't tracking them).
I'd increase the amount of free pages you are tracking with the FSM.
