
Subversion Usage

For HSEB AWIPS and CHPS Projects

 Created 9/19/08

Updated 11/18/08

1 Introduction

The purpose of this document is to provide guidelines for effective usage of version control using Subversion. It will not explain all the options of every Subversion command. It will describe a general process which developers can use to maintain control of their source code over multiple releases. It will introduce the relevant commands (with a minimum of discussion) as necessary for a discussion of the whole process. Command details can be found by following the hyperlinks in Section 5, in other online documentation such as at http://svnbook.red-bean.com, and in various books.
2 Repository and Working Copies

Subversion stores version histories of files in a central repository. The central repository can be located locally or remotely. HSEB uses multiple repositories, all of which are accessible through CasaNOSA. In general, a project that should be built and delivered independently as a unit should be stored in its own repository or its own section of a repository, if that repository contains multiple projects.

Unlike other version control systems, in the conventional usage of Subversion, one does not lock files while they are being modified. Instead, each developer first “checks out” a working copy of a portion of the repository to a local file system. Then the user makes changes to files within that working copy and “commits” them back to the repository. The new versions of the files are then available to other users.

3 Trunks, Branches, and Tags

Subversion stores versions of files and directories. It doesn’t understand what you are doing with them, so users have come up with standard conventions concerning high-level directory names within a repository.

Trunk – a directory under which the source code for latest (unreleased) version of a system is stored and maintained. Developers typically create their working copy from the trunk and commit their changes there.
Branch – a directory under which the source code is stored and maintained and is usually created as a space in which to fix bugs and make enhancements for a particular release. A branch exists as a subdirectory under the branches directory. Developers normally use branches to perform alternate lines of development on the same code.
Tag – a directory in which a “snapshot” of a set of files is stored, but not modified. The snapshot is useful to determine what files were delivered for a release. The snapshot is also useful for determining the minimal set of files which contain all the necessary changes since a particular release. A tag exists as a subdirectory under the tags directory. By convention, files should not be edited and committed back to the tag directory, since that will make it no longer a snapshot, but really a poorly-named branch.
4 What to Store in the Repository

One should store only files required to re-create a release. For C and FORTRAN, this means you should not store .o files. For Java programs, you should not store .class files. Store non-generated .java, .c, .h, .f, and scripts that are used to build, run, or test the system.

If your project uses code generators, do not store the generated code in the repository, unless the code is generated once only and then modified by hand. For example, the OHD-Common system uses generated code in C and Java to access the IHFS database. The source code for the generator is stored in Subversion, but the generated code is not stored there, since it can be re-created by the generator and it is not modified by hand.

There may be a need to store externally-created library or jar files when those files are not commonly available to the system. Examples of this include Postgres drivers and even OHD libraries created from other OHD projects.

Some applications may need to store images for icons.

One can assume that compilers and linkers, etc. are available and do not need to be stored.
5 Basic Commands

The following is a list of Subversion’s commands, with links to the document from which it was extracted, http://svnbook.red-bean.com/en/1.1/ch09.html .
svn add

svn blame = (svn praise, annotate, ann)
svn cat

svn checkout = (svn co)
svn cleanup

svn commit = (svn ci)
svn copy = (svn cp)
svn delete = (svn del, remove, rm)
svn diff = (svn di)
svn export

svn help = (svn ?, h)
svn import

svn info

svn list = (svn ls)
svn log

svn merge

svn mkdir

svn move = (svn mv, rename, ren)
svn propdel = (svn pdel, pd)
svn propedit = (svn pedit, pe)
svn propget = (svn pget, pg)
svn proplist = (svn plist, pl)
svn propset = (svn pset, ps)
svn resolved

svn revert

svn status = (svn stat, st)
svn switch = (svn sw)
svn update= (svn up)
6 Role Definitions
For clarity, this document defines various user roles. An individual developer working with Subversion may fill one or more of these roles. These roles will be used to describe reasonable Subversion usage in a later section.
Programmer – a developer who creates new code or changes existing code.

Release Manager – a developer who is responsible for delivering either an executable system or the set of files required to build such a system. Duties include managing tags and branches. (Q: Does your release manager ever work with the trunk?)
7 Programmer Role
The programmer’s job is to create or modify code and then to get that code into the repository. The subsections below show reasonable ways for a programmer to use Subversion in various scenarios, such as modifying existing code with or without conflicts and adding new code.

7.1 Scenarios

	
	Scenario P1 – Initial checkout from repository

Project : ABC

Deliverables: Source code + build scripts + run scripts.

Working directory parent: /fs/hseb/pda/users/jschmoe/trunk

	#
	
Steps

	Details

	1
	cd /fs/hseb/pda/users/jschmoe/trunk
	Use Linux command to switch to the directory the level immediately above the desired working copy.

	2
	svn co https://casanosa.noaa.gov/svn/ABC/abc/trunk abc
	Creates the SVN working copy “abc” in the /fs/hseb/pda/users/jschmoe/trunk directory, pointing to the abc project’s trunk in the repository. If the string “abc” is omitted in the command, the working copy would be named “trunk”, so the full path would have been

 /fs/hseb/pda/users/jschmoe/trunk/trunk. To be consistent with working copies for branches and to avoid needless redundancy, the previous naming convention was chosen. Using this convention, multiple working copies for various projects can be placed in the working copy parent named “trunk”.
Note: a user or project may adopt a convention such that the omission of “trunk” as the working directory parent is represents the trunk by convention. In that case, the working directory parent could be /fs/hseb/pda/users/jschmoe.

	 Scenario P2 – Modifying existing code with no conflicts

	#
	Steps
	Details

	1
	change to the working directory.

Example: cd /hseb/pda/users/jschmoe/trunk/abc
	At a shell prompt, the user changes to the working copy. This directory resulted from a prior svn checkout command.

	2
	svn update
	Retrieve the latest version of the code from the repository into your working copy.

	3
	modify one or more existing files
	Make changes to source code or other file(s).

	4
	svn status -u
	Shows what files have been modified in your working copy, what files have been changed in the repository since your last update, and which files, if any, conflict with your modifications. The –u option is what forces the command to access the repository for this check.

	5
	svn update
	If anything has changed, as determined in previous step, retrieve the latest version of the code from the repository.

	6
	build/test
	Build and test software to ensure that it still compiles and works.

	7
	svn commit
Include informative comment with the commit.
	Put the changed code into the repository.

	Scenario P3 – Modifying existing code while avoiding an explicit conflict

Note: Avoiding or not avoiding an explicit conflict is a matter of preference for a developer. The programmer may choose to use either Scenario P3 or P4 when dealing with conflicts.

	#
	Steps
	Details

	1
	change to working directory
	At a shell prompt, the user changes to the working copy. This directory resulted from a prior svn checkout command, as seen in Scenario P1.

	2
	svn update
	Retrieve the latest version of the code from the repository into your working copy.

	3
	modify one or more existing files
	Make changes to source code or other file(s).

	4
	svn status -u
	Shows what files have been modified in your workspace, what files have been changed in the repository since your last update, and which files, if any, conflict with your modifications. The –u option is what forces the command to access the repository for this check.

	5
	avoid conflict

	At this point, the programmer will see that there is a conflict and should manually back up his/her modified version of the file for later merging. Use svn revert to avoid an official conflict that would have been recorded when using svn update.

	6
	svn update
	Retrieve the latest version of the files from the repository.

	7
	resolve file differences.
	Modify files manually to merge the changes you want with the updated files.

	 8
	build/test
	Build and test software to ensure that it still compiles and works.

	9
	svn commit
Include informative comment with the commit.
	Put the changed code into the repository.

	Scenario P4 – Modifying existing code with an explicit conflict

Note: Avoiding or not avoiding an explicit conflict is a matter of preference for a developer. The programmer may choose to use either Scenario P3 or P4 when dealing with conflicts.

	#
	Steps
	Details

	1
	change to working directory
	At a shell prompt, the user changes to the working copy. This directory resulted from a prior svn checkout command.

	2
	svn update
	Retrieve the latest version of the code from the repository into your working copy.

	3
	modify one or more existing files
	Make changes to source code or other file(s).

	4
	svn status -u
	Check to see what effect your changes may have.

	5
	svn update
	Retrieve the latest version of the files from the repository.

	6
	resolve file differences
	There will be several versions of the conflicted file added to your working copy. These include 1) the most current in the repository, 2) the version you attempted to commit, and 3) the version in your workspace before you made changes to the file. The original file will have special markers in it that will indicate the places of conflict. Examine the various files and modify the original file, remembering to remove the conflict markers.

	7
	svn resolve <filename> for every conflicted file
	The conflict is known to Subversion and thus requires a Subversion command to resolve it. Using this command will get rid of the extra versions of the conflicted file.

	8
	build/test
	Build and test software to ensure that it still compiles and works.

	9
	svn commit
 Include an informative comment.
	Put the changed code into the repository.

	Scenario P5 – Adding code in a new source file

	#
	Steps
	Details

	1
	change to working directory
	At a shell prompt, the user changes to the working copy. This directory resulted from a prior svn checkout command.

	2
	svn update
	Retrieve the latest version of the code from the repository into your working copy.

	3
	add a new source code file.
	Create a new file containing source code.

	4
	svn add <filename>
	Tell Subversion that the new file exists.

	5
	build/test
	Build and test software to ensure that it still compiles and works.

	6
	svn commit
Include an informative comment.
	Put the new code into the repository.

	Scenario P6 – Changing the name of a source file or its directory.

	#
	Steps
	Details

	1
	change to working copy
	At a shell prompt, the user changes to the working copy. This directory resulted from a prior svn checkout command.

	2
	svn update
	Retrieve the latest version of the code from the repository into your working copy.

	3
	svn rename <original filename> <new filename>
	Rename a file or move the file to a different directory. Two things happen: 1) the file is renamed or moved in your working directory tree and 2) Subversion is prepared to rename or move the file in the repository once the svn commit has been issued.

	4
	build/test
	Build and test software to ensure that it still compiles and works.

	5
	svn commit
Include an informative comment.
	To rename the file, Subversion will use a delete command and an add command on the old name and new name of the file.

7.2 Programmer Rules
When committing files to the repository, please attempt to follow these rules:
1. Don’t break the build. Make sure that the files you commit will allow the project to compile successfully. It is permissible to commit with bugs, since the times between commits might be much too long if commits required perfectly working code. It should be a rare case, though for the changes to introduce known, new bugs.
2. Commit logically-grouped changes at the same time. For example, if you make changes to five different files for one bug fix, then commit all five changes files at the same time. Don’t commit one file at a time. This way, you won’t violate rule #1. A partial fix may break the build, even if only for a short time. Occasional broken builds are not a big problem, but they should be avoided.
3. To avoid huge integration headaches, commit frequently. If you wait too long, you will not be able to follow rule #2 and you are more likely to have a large number of incompatibilities between your code and other programmers’ code. Commit frequently and you will have the opportunity for better communication with other developers, preventing problems early.
4. Update before committing. You need to be using the latest files available for the release.
5. In general, work in the trunk and then arrange with the Release Manager to determine which files belong in the release branch. Then move them there and complete Scenarios P1-P3.

6. When making a change to a branch, do not forget to update the trunk as appropriate. If you do not update the trunk, bugs may mysteriously reappear in future releases. One way to avoid this problem is to make changes first in the trunk and then make the changes in the branch.
7. A programmer can have several working copies that each point to different Subversion repositories or different parts of a single repository. Pay attention to where your working copy is pointing in the Subversion repository: the trunk, a branch, or a tag. Use svn info to check. If you do not pay attention to this, you may find that you committed code to the wrong portion of the repository.

8. Don’t use svn switch in the middle of a working copy tree. Use it only at the top of your working copy tree, as it can really corrupt your working copy if done incorrectly, leaving you with a working copy tree that points to multiple parts of the repository.
8 Release Manager Role
The role of the Release Manager is to ensure that the proper files are held in a release branch, so that the correct files can be delivered (whether they are source code to be delivered to a third party or the executables built from the versioned source code).
8.1 Release Manager Scenarios

	Scenario RM-1 - Creating a release branch

Project : ABC

Deliverables: Source code + build scripts + run scripts.
Working directory grandparent: /fs/hseb/pda/users/jschmoe/
Working directory parent: /fs/hseb/pda/users/jschmoe/ob90

	#
	Steps
	Details

	1
	<all one line>

svn cp https://casanosa.noaa.gov/svn/ABC/abc/trunk https://casanosa.noaa.gov/svn/ABC/abc/branches/ob90 -m "Copy the files from trunk to ob90 branch"

	Copies the trunk to the OB9.0 branch for later modification.

	2
	Change to the working directory grandparent. Create the parent directory and change to it.
cd /fs/hseb/pda/users/jschmoe/

mkdir ob90

cd ob90

	Use Linux commands for this. Let the userid be “jschmoe” and the overall project name be “abc”. The release version is 9.0.

	3
	svn co https://casanosa.noaa.gov/svn/ABC/abc/branches/ob90 abc
	Check out the branch to your branch working copy, named abc.

	4
	change/add/remove files as needed for the build

svn add <filename>
svn rm <filename>
	Remove any experimental work or work that is planned for a future release. Change any build files as needed to take out anything not to be delivered in the release.

	5
	build/test
	Build and test software to ensure that it still compiles and works.

	6
	svn commit
	Put the changed code into the repository. Include informative comment with the commit.

	Scenario RM-2 - Determining what files have changed from one release to another. Option 1
Project : ABC

Deliverables: Source code + build scripts + run scripts.

Previously delivered release: tags/ob90_post_pit2 (2 deliveries after PIT)

New release: /branches/ob91

Working directory: /fs/hseb/pda/users/jschmoe/switcher
Note: It is best to do this kind of checking with a script, so that it is repeatable.

	#
	Steps
	Details

	1
	cd /fs/hseb/pda/users/jschmoe/switcher

	At a shell prompt, the user changes to a special working copy. This directory resulted from a prior svn checkout command and is special because the user does not actually commit files from this working copy. This directory exists only to help the Release Manager determine what differences there are between releases.

	2
	svn switch https://casanosa.noaa.gov/svn/ABC/abc/tags/ob90_post_pit2
	Retrieve the latest version of the already delivered code from the repository into your working copy. This sets up the baseline of delivered files.

	3
	svn switch https://casanosa.noaa.gov/svn/ABC/abc/branches/ob91 > change.log

	Switch the working copy to the targeted release and save the standard output, which is a list of the files and directories changed, whether they are added (new), deleted, or updated, designated by “A” for added, “D” for deleted, and “U” for updated in front of the file or directory name.

	4
	sort change.log > change.log.sorted
	Sort the files and directories by the operation performed on them, as designated by “U”, “D”, or “A”.

	5
	Copy text (modified as needed) from change.log.sorted into a script or scripts used to help deliver files.
	Using the output in standard template delivery scripts prevents copying errors, speeds up the delivery process, and provides for traceability and repeatability.

	Scenario RM-3 - Determining what files have changed from one release to another. Option 2

Project : ABC

Deliverables: Source code + build scripts + run scripts.

Previously delivered release: tags/ob90_post_pit2 (2 deliveries after PIT)

New release: /branches/ob91

Working copy: /fs/hseb/pda/users/jschmoe/abc. This can be any working copy in the same repository as one of the releases (either the delivered or the new release). In other words, this can be done from any Subversioned directory.
Note: It is best to store these commands, possibly in a script, so that they’re repeatable.

	#
	Steps
	Details

	1
	cd /fs/hseb/pda/users/jschmoe/abc

	At a shell prompt, the user changes to a working copy. This directory resulted from a prior svn checkout command.

	2
	svn diff --no-diff-deleted https://casanosa.noaa.gov/svn/ABC/abc ...<path>/branches/ob91 https://casanosa.noaa.gov/svn/ABC/abc/...<path>/ tags/ob90_post_pit2 | grep 'Index:' | grep -v deleted > mod_old_files_old_dirs
	NOTE: The general form of the “svn diff” command is to put the old url first followed by the new url. This order is reversed here to make new files appear to be deleted. “grep 'Index:'” allows only a list of changed files to be output; “grep -v deleted” filters out (removes) “deleted” (i.e. new) files. The list of files in mod_files_old_dirs files will be only pre-existing files that have been modified.

	3
	svn diff --no-diff-deleted https://casanosa.noaa.gov/svn/ABC/abc...<path>/branches/ob91 https://casanosa.noaa.gov/svn/ABC/abc/...<path>/ tags/ob90_post_pit2 | grep 'Index:' | grep deleted > new_files_old_dirs
	“grep deleted” shows only “deleted” (i.e. new) files. The list of files in new_files_old_dirs will be only files from previously -existing directories that have been newly created since the last release.

	4
	NOTE: If the release manager doesn’t need to differentiate between old and new files from previously existing directories, steps 2 and 3 above can be combined as:
svn diff --no-diff-deleted https://casanosa.noaa.gov/svn/ABC/abc/branches/ob91 https://casanosa.noaa.gov/svn/ABC/abc/tags/ob90_post_pit2 | grep 'Index:' > changes_in_old_dirs
	The list of files in changes_in_old_dirs will be all new and modified files from previously existing directories.

	5
	svn ls -R https://casanosa.noaa.gov/svn/ABC/abc/...<path>/ tags/ob90_post_pit2 > old_lsout
	old_lsout will contain a recursive listing of all files from the old version of the code

	6
	svn ls -R https://casanosa.noaa.gov/svn/ABC/abc...<path>/branches/ob91 > new_lsout
	new_lsout will contain a recursive listing of all files from the new version of the code

	7
	diff old_lsout new_lsout > new_files_new_dirs
	new_files_new_dirs will contain a listing of all newly created files in newly created directories

	8
	Copy text (modified as needed) from mod_files_old_dirs, new_files_old_dirs, changes_in_old_dirs, and new_files_new_dirs into a script or scripts used to help deliver files.
	Using the output in standard template delivery scripts prevents copying errors, speeds up the delivery process, and provides for traceability and repeatability.

	9
	Copy text (modified as needed) from change.log.sorted into a script or scripts used to help deliver files.
	Using the output in standard template delivery scripts prevents copying errors, speeds up the delivery process, and provides for traceability and repeatability.

8.2 Release Manager Rules

1. Make sure to create a tag after each release so that you have a snapshot of the system as of that release.

2. Tags are for snapshots, and branches are for editing.

3. Automate what you can. Use Subversion to tell you what files have changed between builds (Scenarios RM-2 and RM-3). Don’t rely solely on developers’ memories.
8.3 Release Manager Suggestion

Use scripts to execute Steps 1-4 of Scenario RM-2, saving the list of changed files. Then, take the list of files and cut and paste it into a script for delivering those files as discussed in Step 5 of RM-2.
1

